Generation of a luciferase-based reporter for CHH and CG DNA methylation in Arabidopsis thaliana

نویسندگان

  • Thanh Theresa Dinh
  • Michael O’Leary
  • So Youn Won
  • Shengben Li
  • Lorena Arroyo
  • Xigang Liu
  • Andrew Defries
  • Binglian Zheng
  • Sean R Cutler
  • Xuemei Chen
چکیده

BACKGROUND DNA methylation ensures genome integrity and regulates gene expression in diverse eukaryotes. In Arabidopsis, methylation occurs in three sequence contexts: CG, CHG and CHH. The initial establishment of DNA methylation at all three sequence contexts occurs through a process known as RNA-directed DNA methylation (RdDM), in which small RNAs bound by Argonaute4 (AGO4) guide DNA methylation at homologous loci through the de novo methyltransferase DRM2. Once established, DNA methylation at each of the three sequence contexts is maintained through different mechanisms. Although some players involved in RdDM and maintenance methylation have been identified, the underlying molecular mechanisms are not fully understood. To aid the comprehensive identification of players in DNA methylation, we generated a transgenic reporter system that permits genetic and chemical genetic screens in Arabidopsis. RESULTS A dual 35S promoter (d35S) driven luciferase (LUC) reporter was introduced into Arabidopsis and LUCL, a line with a low basal level of luciferase activity, was obtained. LUCL was found to be a multi-copy, single-insertion transgene that contains methylated cytosines in CG, CHG and CHH contexts, with the highest methylation in the CG context. Methylation was present throughout the promoter and LUC coding region. Treatment with an inhibitor of cytosine methylation de-repressed luciferase activity. A mutation in MET1, which encodes the CG maintenance methyltransferase, drastically reduced CG methylation and de-repressed LUC expression. Mutations in AGO4 and DRM2 also de-repressed LUC expression, albeit to a smaller extent than loss of MET1. Using LUCL as a reporter line, we performed a chemical screen for compounds that de-repress LUC expression, and identified a chemical, methotrexate, known to be involved in biogenesis of the methyl donor. CONCLUSION We developed a luciferase-based reporter system, LUCL, which reports both RdDM and CG maintenance methylation in Arabidopsis. The low basal level of LUCL expression provides an easy readout in genetic and chemical genetic screens that will dissect the mechanisms of RdDM and methylation maintenance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a luciferase-based reporter of transcriptional gene silencing that enables bidirectional mutant screening in Arabidopsis thaliana

UNLABELLED BACKGROUND Cytosine methylation is an important chromatin modification that maintains genome integrity and regulates gene expression through transcriptional gene silencing. Major players in de novo methylation guided by siRNAs (known as RNA-directed DNA methylation, or RdDM), maintenance methylation, and active demethylation have been identified in Arabidopsis. However, active dem...

متن کامل

Transmission of Epi-Alleles with MET1-Dependent Dense Methylation in Arabidopsis thaliana

DNA methylation in plants targets cytosines in three sequence contexts, CG, CHG and CHH (H representing A, C or T). Each of these patterns has traditionally been associated with distinct DNA methylation pathways with CHH methylation being controlled by the RNA dependent DNA methylation (RdDM) pathway employing small RNAs as a guide for the de novo DOMAINS REARRANGED METHYLTRANSFERASE (DRM2), an...

متن کامل

Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading.

Plants use siRNAs to target cytosine DNA methylation to both symmetrical CG and nonsymmetrical (CHG and CHH) sequence contexts. DNA methylation and siRNA clusters most frequently overlap with transposons in the Arabidopsis thaliana genome. However, a significant number of protein-coding genes also show promoter DNA methylation, and this can be used to silence their expression. Loss of the major...

متن کامل

Local DNA hypomethylation activates genes in rice endosperm.

Cytosine methylation silences transposable elements in plants, vertebrates, and fungi but also regulates gene expression. Plant methylation is catalyzed by three families of enzymes, each with a preferred sequence context: CG, CHG (H = A, C, or T), and CHH, with CHH methylation targeted by the RNAi pathway. Arabidopsis thaliana endosperm, a placenta-like tissue that nourishes the embryo, is glo...

متن کامل

Conservation and divergence in eukaryotic DNA methylation.

C ytosine methylation is a common DNA modification found in most eukaryotic organisms including plants, animals, and fungi (1, 2). The addition of a methyl group to cytosine nucleotides in DNA does not change the primary DNA sequence, but the covalent modification of DNA by methylation can impact gene expression and activity in a heritable fashion. This type of epigenetic regulation through DNA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013